
1 Introduction

1.1 Angular Spectrum of Plane Waves

A Gaussian beam with a beam waist of w0 has a corresponding angular
representation

A0(θ, φ) =
1

N
e
−

(

θ
θ0

)

2

(1)

where

θ0 =
λ

πw0

(2)

and the normalization N is chosen so that

∫ 2π

φ=0

∫ π/2

θ=0

A0(θ, φ)
2 sin θ dθ dφ = 1 (3)

so that the coupling integral, I00, for any beam with itself is unity

Iij =
∫ 2π

φ=0

∫ π/2

θ=0

A∗

i (θ, φ)Aj(θ, φ) sin θ dθ dφ (4)

1.2 Propagation of the Beam

Each infinite plane wave, propagating through a distance z in a vacuum will
undergo a phase shift ~k · ~z. The following equations were implemented in the
Octave function propagatebeam.m.

A′(θ, φ) = A(θ, φ) eikz cos θ (5)

k =
2πν

c
(6)

For propagation through layers of material the Octave function layers complex.m

was used. This returns amplitude transmission coefficients tTE and tTM for a
stack of layers with given complex values of ε and µ. The TE and TM com-
ponents of each plane wave were identified as A(θ, φ) cosφ and A(θ, φ) sinφ
respectively. Then using the same relations to re-assemble the beam, propa-
gation through the layers is given by:

A′(θ, φ) = cos2(φ) tTE(θ, z, ν)A(θ, φ)

+ sin2(φ) tTM(θ, z, ν)A(θ, φ) (7)

The Octave function layersbeam.m performs this calculation.
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2 Test Runs

A number of test runs were performed as a function of layer thickness, z. In
each case a set of beam coefficients, A0, for a given angle, θ0, was generated.
The beam was the propagated both using the layers complex.m code and
also the simple beam propagation function for the same distance.

A1 = layersbeam.m ν, ε, z, A0 (8)

A2 = propagatebeam.m ν, z, A0 (9)

Finally the magnitude of the coupling integral was taken

|I12| (10)

which should be equal to 1 for an plane wave in air due to the correction for
distance applied to A2.

To test the routines, this procedure was carried out for vacuum (ε = 1),
giving the result shown in Figure 1. As expected this gives a value of I12 = 1
for each distance and beam angle.

The procedure was also tested for values of ε = 2, 4 (n =
√
2, 2)

giving the results shown in Figure 2 and Figure 3.

2



Figure 1: ε = 1

Figure 2: ε = 2
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Figure 3: ε = 4
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3 Results

The routine was then run as a function of frequency with the following pa-
rameters:

• Refractive index n = 2 (ε = 4)

• Thickness z = 10 mm

• Frequency ν = 75 – 110 GHz

The results are plotted in Figure 4. Finally the period of the oscillations
was fitted in order to determine the refractive index of the material, giving
the plot shown in Figure 5.

5



Figure 4: ε = 4

Figure 5: Fitted refractive index for each angle θ0.
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A Numerical Evaluation of Coupling Integral

A.1 Evaluation as a Sum

Sample points are defined as follows, where in order to handle the case of a
pure plane wave θ = 0 represents the range 0 ≤ θ < ∆θ/2 and other values
represent the range θi −∆θ/2 ≤ θ < θi +∆θ/2.

θ : 0 . . . (nθ − 1) π
2nθ−1

, ∆θ =
π

2nθ − 1
(11)

φ : −π(1− 2

nφ
) . . . π, ∆φ =

2π

nφ

(12)

Then the surface area of the corresponding element unit sphere is given by
∫ φ+∆φ/2

φ−∆φ/2

∫ θ+∆θ/2

θ−∆θ/2
sin θ dθ dφ =

[

φ
[

− cos θ
]θ+∆θ/2

θ−∆θ/2

]φ+∆φ/2

φ−∆φ/2

= ∆φ (cos(θ −∆θ/2)− cos(θ +∆θ/2))

= 2 sin θ sin (∆θ/2)∆φ (13)

or in the case of θ = 0
[

φ
[

− cos θ
]∆θ/2

0

]φ+∆φ/2

φ−∆φ/2
= (1− cos (∆θ/2))∆φ

So the final expression for discrete sample points is:

Iij =
2π
∑

φ=0

π/2
∑

θ=0

A∗

i (θ, φ)Aj(θ, φ)

{

(1− cos (∆θ/2))∆φ θ = 0
2 sin θ sin (∆θ/2)∆φ otherwise

(14)

A.2 Minimum Number of Sample Points

To ensure a smooth variation of phase between the sample points we can
impose a limit

|kz cos θi+1 − kz cos θi| ≪
π

8
(15)

which can be rearranged to

∆θ sin θ ≪ c

16νz
(16)

or taking the worst case (sin θ = 1) and a general medium

∆θ ≪ c

16νz
√
εµ

(17)

For example with n = 2, ν = 100 GHz, z = 1 mm

∆θ ≪ 5◦ ⇒ ≫ 18 points (18)
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